Abstract

Biofuels are sustainable alternatives to fossil fuels because of their renewable and low-cost raw materials, environmentally friendly conversion technologies and low emissions upon combustion. In addition, biofuels can also be upgraded to enhance their fuel properties for wide applicability in power infrastructures. Biofuels can be produced from a wide variety of biomasses through thermochemical and biological conversion processes. This article provides insights into the fundamental and applied concepts of thermochemical conversion methods such as torrefaction, pyrolysis, liquefaction, gasification and transesterification. It is important to understand the physicochemical attributes of biomass resources to ascertain their potential for biofuel production. Hence, the composition and properties of different biomass resources such as lignocellulosic feedstocks, oilseed crops, municipal solid waste, food waste and animal manure have been discussed. The properties of different biofuels such as biochar, bio-oil, bio-crude oil, syngas and biodiesel have been described. The article concludes with an analysis of the strength, weaknesses, opportunities and threats of the thermochemical conversion technologies to understand their scale-up applications and commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.