Abstract

A survey of the spatial and temporal behavior of the atmospheric general circulation as it relates to both polar regions is presented. The review is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), updated using ECMWF operational analyses. The analysis spans 1960–2005 in the Northern Hemisphere, but is restricted to 1979–2005 in the Southern Hemisphere because of difficulties experienced by ERA-40 prior to the modern satellite era. The seasonal cycle of atmospheric circulation is illustrated by focusing on winter and summer. The huge circulation contrasts between the land-dominated Northern Hemisphere and the ocean-dominated Southern Hemisphere stand out. The intensification of the North Atlantic Oscillation/Northern Annular Mode and the Southern Annular Mode in DJF is highlighted and likely due to warming of the tropical Indian Ocean. The Arctic frontal zone during northern summer and the semi-annual oscillation throughout the year in the Southern Hemisphere are prominent features of the high latitude circulation in the respective hemispheres. Rotated principal component analysis (RPCA) is used to describe the primary modes of temporal variability affecting both polar regions, especially the links with the tropical forcing. The North Atlantic Oscillation is a key modulator of the atmospheric circulation in the North Atlantic sector, especially in winter, and is the dominant control on the moisture transport into the Arctic Basin. The Pacific-South American teleconnection patterns are primary factors in the high southern latitude circulation variability throughout the year, especially in the Pacific sector of Antarctica where the majority of moisture transport into the continent occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.