Abstract

This review introduces an innovative technology termed "Micro-Extrusion Foaming (MEF)", which amalgamates the merits of physical foaming and 3D printing. It presents a groundbreaking approach to producing porous polymer fibers and parts. Conventional methods for creating porous materials often encounter obstacles such as the extensive use of organic solvents, intricate processing, and suboptimal production efficiency. The MEF technique surmounts these challenges by initially saturating a polymer filament with compressed CO2 or N2, followed by cell nucleation and growth during the molten extrusion process. This technology offers manifold advantages, encompassing an adjustable pore size and porosity, environmental friendliness, high processing efficiency, and compatibility with diverse polymer materials. The review meticulously elucidates the principles and fabrication process integral to MEF, encompassing the creation of porous fibers through the elongational behavior of foamed melts and the generation of porous parts through the stacking of foamed melts. Furthermore, the review explores the varied applications of this technology across diverse fields and imparts insights for future directions and challenges. These include augmenting material performance, refining fabrication processes, and broadening the scope of applications. MEF technology holds immense potential in the realm of porous material preparation, heralding noteworthy advancements and innovations in manufacturing and materials science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call