Abstract

ABSTRACT Recent fieldwork and the synthesis and reappraisal of aeromagnetic, geologic, structural, geochemical, and geochronologic data have provided a new perspective on the structural evolution and geologic history of the Arabian Shield. Although Paleoproterozoic rocks are present in the eastern part of the Shield, its geologic evolution was mainly concentrated in the period from 900 to 550 Ma during which the formation, amalgamation, and final Pan-African cratonization of several tectonostratigraphic terranes took place. The terranes are separated by major NW-trending faults and by N-, NW- and NE-oriented suture zones lined by serpentinized ultramafic rocks (ophiolites). Terrane analysis using the lithostratigraphy and geochronology of suture zones, fault zones, overlapping basins, and stitching plutons, has helped to constrain the geologic history of the Arabian Shield. Ophiolites and volcanic-arcs have been dated at between 900 and 680 Ma, with the southern terrane of Asir being older than the Midyan terrane in the north and the Ar Rayn terrane in the east. Final cratonization of the terranes between 680 and 610 Ma induced a network of anastomosing, strike-slip faults consisting of the N-trending Nabitah belt, the major NW-striking left-lateral transpressive faults (early Najd faults), lined by gneiss domes and associated with sedimentary basins, and N- to NE-trending right-lateral transpressive faults. Following the Pan-African cratonization, widespread alkaline granitization was contemporaneous with the deposition of the Jibalah volcanic and sedimentary rocks in transtensional pull-apart basins. Crustal thinning was governed by the Najd fault system of left-lateral transform faults that controlled the formation of the Jibalah basins and was synchronous with the emplacement of major E- to NW-trending dike swarms throughout the Arabian Shield. The extensional episode ended with a marine transgression in which carbonates were deposited in the Jibalah basins. Continuation of the thinning process may explain the subsequent deposition of the marine formations of the lower Paleozoic cover. Our interpretation of the distribution and chronology of orogenic zones does not correspond entirely to those proposed in earlier studies. In particular, the N-trending Nabitah and NW-trending Najd fault zones are shown to be part of the same history of oblique transpressional accretion rather than being two distinct events related to accretion and dispersion of the terranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.