Abstract

Moderate or Intense Low-oxygen Dilution (MILD) combustion is considered as one of the most promising novel combustion technologies, as it ensures high efficiency and very low emissions (NOx and CO). Because of the high level of dilution, the system reactivity is reduced and the chemical time scale is increased compared to conventional flames. Therefore, combustion models accounting for finite-rate chemistry are needed to study the characteristics of such flames. Reactor based models, such as the Partially Stirred Reactor and the Eddy Dissipation Concept models have been successfully used to model MILD combustion. This article describes recent progress and developments in the application of reactor based models for the simulation of the jet-in-hot-coflow burners that emulate MILD combustion. The main objective is to provide an overview about the current state of the art of reactor based models for turbulence-chemistry interactions in MILD regime and outline future prospects for the further development of such models. The literature acknowledges both Reynolds Averaged Navier Stokes and Large Eddy Simulations studies, with various operating conditions as well as different fuels. The results indicate that it is necessary to include both the mixing and chemical time scales explicitly in the combustion model formulation. Because of the distributed reaction area, according to recent investigations, Large Eddy Simulation grid can be sufficient to resolve the MILD combustion reacting structures. The present review underlines the importance of finite rate chemistry in MILD combustion simulations, as well as of providing reliable estimation of the characteristic time scales.

Highlights

  • Facing the current challenges of air pollution and energy shortage, it is urgent to develop fuel flexible, efficient and environmentally friendly combustion technologies

  • Numerical Investigation of JHC Burner high dilution is responsible for the widening of the reaction zone, while the mixing with hot exhaust gases ensures that reaction takes place outside of the flammability limits

  • The present paper reports a short review on the application of reactor based models to the simulation of a canonical Moderate or Intense Low-oxygen Dilution (MILD) combustion system, the jet in hot coflow (JHC) burner

Read more

Summary

Introduction

Facing the current challenges of air pollution and energy shortage, it is urgent to develop fuel flexible, efficient and environmentally friendly combustion technologies. Novel combustion technologies with low emissions, high efficiency and fuel flexibility have become essential under these challenges (Li, 2019). In this context, one promising technology in energy production and manufacturing is Moderate or Intense Low oxygen Dilution (MILD) combustion (Wünning and Wünning, 1997; Cavaliere and de Joannon, 2004; de Joannon et al, 2012). The. Numerical Investigation of JHC Burner high dilution is responsible for the widening of the reaction zone, while the mixing with hot exhaust gases ensures that reaction takes place outside of the flammability limits. To decrease the influence of geometric complexity encountered in practical devices, simplified lab-scale axis-symmetric jet burners are generally used to emulate MILD conditions—for example, the jet-in-hot-coflow (JHC) burner (Dally et al, 2002; Oldenhof et al, 2010)

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.