Abstract

The application of thermal barrier coatings (TBCs) to components with internal cooling in the hot gas stream of gas turbine engines has facilitated a steep increase in the turbine entry temperature and the associated increase in performance and efficiency of gas turbine engines. However, TBCs are susceptible to various life limiting issues associated with their operating environment including erosion, corrosion, oxidation, sintering and foreign object damage (FOD).This is a review paper that examines various degradation and erosion mechanisms of TBCs, especially those produced by electron beam physical vapour deposition (EB-PVD). The results from a number of laboratory tests under various impact conditions are discussed before the different erosion and FOD mechanisms are reviewed. The transitions between the various erosion mechanisms are discussed in terms of the D/d ratio (contact area diameter/column diameter), a relatively new concept that relates the impact size to the erosion mechanism. The effects of ageing, dopant additions and calcium–magnesium–alumina–silicates on the life of TBCs are examined. It is shown that while ageing increases the erosion rate of EB-PVD TBCs, ageing of plasma sprayed TBCs in fact lowers the erosion rate. Finally modelling of EB-PVD TBCs is briefly introduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call