Abstract

The presence of electrolytes (salts) in aqueous solution modifies the solubility and related properties of organic compounds in water. Reported data for salting-out constants (Setschenow constants) which relate solubility to the salt concentration of aromatic and alkane hydrocarbons, and their chlorinated derivatives, and some organic acids have been compiled for 25 aqueous salt solutions at 20–25 °C. The salting-out sequences for various electrolytes are discussed and it is shown that the salting-out effect is greater for organic solutes with large molar volumes. A compilation of salting-out constants for NaCl solutions and seawater (natural or synthetic) with a variety of solutes, shows that the Setschenow constants are similar for natural or artificial seawater (at salinity of 30–35%.) and NaCl solutions (at 3.0–3.5% or 0.5 M). A simple correlation is suggested for estimating the Setschenow constants for a variety of organic solutes in seawater which typically yields a reduction in solubility by a factor of 1.36. The hydrophobicity of organic solutes is therefore increased by this factor, as is the air-water partition coefficient, implying an increased partitioning from aqueous solution into air, organic carbon and lipid phases. The effect must be quantified when comparing the behavior of organic contaminants in freshwater and marine conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call