Abstract
Super resolution problems are widely discussed in medical imaging. Spatial resolution of medical images are not sufficient due to the constraints such as image acquisition time, low irradiation dose or hardware limits. To address these problems, different super resolution methods have been proposed, such as optimization or learning-based approaches. Recently, deep learning methods become a thriving technology and are developing at an exponential speed. We think it is necessary to write a review to present the current situation of deep learning in medical imaging super resolution. In this paper, we first briefly introduce deep learning methods, then present a number of important deep learning approaches to solve super resolution problems, different architectures as well as up-sampling operations will be introduced. Afterwards, we focus on the applications of deep learning methods in medical imaging super resolution problems, the challenges to overcome will be presented as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.