Abstract

Matrix models are a highly successful framework for the analytic study of random two dimensional surfaces with applications to quantum gravity in two dimensions, string theory, conformal field theory, statistical physics in random geometry, etc. Their success relies crucially on the so called 1/N expansion introduced by 't Hooft. In higher dimensions matrix models generalize to tensor models. In the absence of a viable 1/N expansion tensor models have for a long time been less successful in providing an analytically controlled theory of random higher dimensional topological spaces. This situation has drastically changed recently. Models for a generic complex tensor have been shown to admit a 1/N expansion dominated by graphs of spherical topology in arbitrary dimensions and to undergo a phase transition to a continuum theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call