Abstract

Fluidized beds enable good solids mixing, high rates of heat and mass transfer, and large throughputs, but there remain issues related to fluidization quality and scale-up. In this work I review modification techniques for fluidized beds from the perspective of the principles of process intensification (PI), that is, effective bubbling suppression and elutriation control. These techniques are further refined into (1) design factors, e.g. modifying the bed configuration, or the application of internal and external forces, and (2) operational factors, including altering the particle properties ( e.g. size, density, surface area) and fluidizing gas properties ( e.g. density, viscosity, or velocity). As far as two proposed PI principles are concerned, our review suggests that it ought to be possible to gain improvements of between 2 and 4 times over conventional fluidized bed designs by the application of these techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.