Abstract

The purpose of this review paper is to present the techniques, advances, problems and likely future developments in numerical modelling for rock mechanics. Such modelling is essential for studying the fundamental processes occurring in rocks and for rock engineering design. The review begins by explaining the special nature of rock masses and the consequential difficulties when attempting to model their inherent characteristics of discontinuousness, anisotropy, inhomogeneity and inelasticity. The rock engineering design backdrop to the review is also presented. The different types of numerical models are outlined in Section 2, together with a discussion on how to obtain the necessary parameters for the models. There is also discussion on the value that is obtained from the modelling, especially the enhanced understanding of those mechanisms initiated by engineering perturbations. In Section 3, the largest section, states-of-the-art and advances associated with the main methods are presented in detail. In many cases, for the model to adequately represent the rock reality, it is necessary to incorporate couplings between the thermal, hydraulic and mechanical processes. The physical processes and the equations characterizing the coupled behaviour are included in Section 4, with an illustrative example and discussion on the likely future development of coupled models. Finally, in Section 5, the advances and outstanding issues in the subject are listed and in Section 6 there are specific recommendations concerning quality control, enhancing confidence in the models, and the potential future developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.