Abstract

The symmetric MEMS gyroscope is a typical representative of inertial navigation sensors in recent years. It is different from the traditional mechanical rotor gyroscope in that it structurally discards the high-speed rotor and other moving parts to extend the service life and significantly improve accuracy. The highest accuracy is achieved when the ideal mode-matching state is realized. Due to the processing limitation, this index cannot be achieved, and we can only explore ways to approach this index continuously. This paper’s results of error suppression for the symmetric MEMS gyroscope are initially classified into three categories. The first category mainly introduces the processing structure and working mode of the symmetrical gyroscope. The second is mechanical tuning from the structure and the third is electrostatic tuning from the peripheral control circuit. Based on the listed results, the paper compares the two tuning modes and analyzes their advantages and disadvantages. The fourth category is the tuning means incorporating the emerging algorithm. On this basis, the elements of improvement for future high-precision symmetric MEMS gyroscopes are envisioned to provide a part of the theoretical reference for the future development direction of sensors in inertial navigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.