Abstract

Epidemiological studies show a positive association between adequate sleep and good health. Further, disrupted sleep may increase the risk for CNS diseases, such as stroke and Alzheimer’s disease. However, there has been limited progress in determining how sleep is linked to brain health or how sleep disruption may increase susceptibility to brain insult and disease. Animal studies can aid in understanding these links. In reviewing the animal literature related to the effects of sleep disruption on the brain, we found most of the work was directed toward investigating and characterizing the role of various brain areas or structures in initiating and regulating sleep. In contrast, limited effort has been directed towards understanding how sleep disruption alters the brain’s health or susceptibility to insult. We also note many current studies have determined the changes in the brain following compromised sleep by examining, for example, the brain transcriptome or to a more limited extent the proteome. However, these studies have utilized almost exclusively total sleep deprivation (e.g., 24 out of 24 hours) paradigms or single short periods of limited acute sleep deprivation (e.g., 3 out of 24 hours). While such strategies are beneficial in understanding how sleep is controlled, they may not have much translational value for determining links between sleep and brain health or for determining how sleep disruption may increase brain susceptibility to insult. Surprisingly, few studies have determined how the duration and recurrence of sleep deprivation influence the effects seen after sleep deprivation. Our aim in this review was to identify relevant rodent studies from 1980 through 2012 and analyze those that use varying durations of sleep deprivation or restriction in their effort to evaluate the effects of sleep deprivation on the brain transcriptome and to a more limited extent the proteome. We examined how differences in the duration of sleep deprivation affect gene and protein expression to better understand the full consequences of repeated sleep disruption on the brain. Future research needs to consider and emphasize how the type and extent of the sleep deprivation exposure impacts the conclusions reached concerning the influence of sleep disruption on the brain.We identified relevant studies between 1980 and 2012 by searching the electronic databases of PubMed, Medline (Ovid), Embase (Ovid), and Web of Science using the terms “sleep” AND “disrupt”, “deprivation”, “restrict”, “fragment”, “loss”, “disturb”, “disorder”, “dysfunction”, “brain”, “cortex”, striatum”, hypothalamus”, “hippocampus”, “gene”, “protein”, “genomics”, “proteomics”, “polymerase chain reaction”, “pcr”, “microarray”, “molecular”, “rodent” “rat”, “rats”, “mouse”, “mice”. All searches were limited to rodent studies in English and the reference lists of retrieved articles were searched for additional pertinent studies.Electronic supplementary materialThe online version of this article (doi:10.1186/2193-1801-3-728) contains supplementary material, which is available to authorized users.

Highlights

  • Sleep, one of the most conserved behaviors, consumes approximately one third of a person’s life, yet the purpose of sleep is still not fully understood

  • In an effort to understand the function of sleep, researchers predominately study the effects of sleep deprivation (SD) and sleep restriction (SR) in humans and animals

  • Increased sleepiness was thought to be the main consequence of sleep loss and its presence accounted for the various effects of sleep loss such as cognitive impairment

Read more

Summary

Introduction

One of the most conserved behaviors, consumes approximately one third of a person’s life, yet the purpose of sleep is still not fully understood. Microarrays, have become widely used in sleep research to evaluate and compare transcriptomic profiles of sleep-wake and sleep deprived states with an initial emphasis on characterizing the sleep and awake states. Together, these studies have yielded thousands of candidate genes involved in sleep homeostasis and/or function (Terao et al 2003a; Terao et al 2003b; Cirelli et al 2006; Terao et al 2006; Mackiewicz et al 2007; Maret et al 2007; Kilduff et al 2008; Mackiewicz et al 2009; Thompson et al 2010; Veasey 2010; Datta et al 2011; Mongrain et al 2011).

Whole Brain
Gentle handing
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.