Abstract
The introduction of the intraocular vitrectomy instrument by Machemer et al. has led to remarkable advancements in vitreoretinal surgery enabling the limitations of human physiologic capabilities to be reached. To overcome the barriers of perception, tremor, and dexterity, robotic technologies have been investigated with current advancements nearing the feasibility for clinical use. There are four categories of robotic systems that have emerged through the research: (1) handheld instruments with intrinsic robotic assistance, (2) hand-on-hand robotic systems, (3) teleoperated robotic systems, and (4) magnetic guidance robots. This review covers the improvements and the remaining needs for safe, cost-effective clinical deployment of robotic systems in vitreoretinal surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.