Abstract

The introduction of the intraocular vitrectomy instrument by Machemer et al. has led to remarkable advancements in vitreoretinal surgery enabling the limitations of human physiologic capabilities to be reached. To overcome the barriers of perception, tremor, and dexterity, robotic technologies have been investigated with current advancements nearing the feasibility for clinical use. There are four categories of robotic systems that have emerged through the research: (1) handheld instruments with intrinsic robotic assistance, (2) hand-on-hand robotic systems, (3) teleoperated robotic systems, and (4) magnetic guidance robots. This review covers the improvements and the remaining needs for safe, cost-effective clinical deployment of robotic systems in vitreoretinal surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call