Abstract
The fundus is the only region where arteries, veins and capillaries can be directly observed. Morphological changes of retinal vessels in the fundus are signals for the appearance of many fundus and cardiovascular diseases. Consequently, the segmentation of retinal vessels is crucial for diagnosing and screening various diseases. In recent years, a large amount of research publications has been published on retinal vessel segmentation. This paper offers a comprehensive review of retinal vessel automatic segmentation research, covering both traditional methods and deep learning methods, including unsupervised and supervised learning methods. Especially, the supervised learning methods are summarized and analyzed from three aspects: traditional CNN-based, GAN-based, and UNet-based methods. This paper also presents an overview of the development of retinal vessel automatic segmentation and analyzes the advantages and disadvantages of existing segmentation methods. The results are shown in two at-a-glance tables. Finally, our work provides a faster and better look to recognize and understand the field of retinal vessel segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.