Abstract

Bearings are crucial components that decide whether or not a wind turbine can work smoothly and that have a significant impact on the transmission efficiency and stability of the entire wind turbine’s life. However, wind power equipment operates in complex environments and under complex working conditions over long time periods. Thus, it is extremely prone to bearing wear failures, and this can cause the whole generator set to fail to work smoothly. This paper takes wind turbine bearings as the research object and provides an overview and analysis for realizing fault warnings, avoiding bearing failure, and prolonging bearing life. Firstly, a study of the typical failure modes of wind turbine bearings was conducted to provide a comprehensive overview of the tribological problems and the effects of the bearings. Secondly, the failure characteristics and diagnosis procedure for wind power bearings were examined, as well as the mechanism and procedure for failure diagnosis being explored. Finally, we summarize the application of fault diagnosis methods based on spectrum analysis, wavelet analysis, and artificial intelligence in wind turbine bearing fault diagnosis. In addition, the directions and challenges of wind turbine bearing failure analysis and fault diagnosis research are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.