Abstract

Plasmonics squeezes light into dimensions far beyond the diffraction limit by coupling the light with the surface collective oscillation of free electrons at the interface of a metal and a dielectric. Plasmonics, referred to as a promising candidate for high-speed and high-density integrated circuits, bridges microscale photonics and nanoscale electronics and offers similar speed of photonic devices and similar dimension of electronic devices. Various types of passive and active surface plasmon polariton (SPP) enabled devices with enhanced deep-subwavelength mode confinement have attracted increasing interest including waveguides, lasers and biosensors. Despite the trade-off between the unavoidable metal absorption loss and extreme light concentration, the ever-increasing research efforts have been devoted to seeking low-loss plasmon-assisted nanophotonic devices with deep-subwavelength mode confinement, which might find potential applications in high-density nanophotonic integration and efficient nonlinear signal processing. In addition, other plasmon-assisted nanophotonic devices might also promote grooming functionalities and applications benefiting from plasmonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call