Abstract
Triply periodic minimal surfaces (TPMS) have shown better mechanical performance, mass transfer, and thermal conductivity than conventional and strut-based structures, which have been employed in different disciplines. Most of the literature investigates different TPMS topologies in cooling channels to enhance thermal performance due to the smooth curvature and large surface area. However, a deeper investigation of the effects of TPMS design variables and the thermal performance advantages of cooling channels is required. This review details the effects of TPMS design variables, i.e., porosity, wall thickness, and unit cell size, on flow and heat transfer enhancement. It is found that varying the design variables significantly changes the flow and heat transfer characteristics. Also, by comparing TPMS and conventional cooling structures, it is found that most TPMS structures show better thermal performance than other strategies. Moreover, different fabrication methods for TPMS-based cooling channels in recent investigations are collected and discussed. In light of the reviewed literature, recommendations for future research suggest that more experimental and numerical studies on the flow and heat transfer for different cooling applications are needed. Therefore, this review serves as a reference tool to guide future studies on the flow and heat transfer of TPMS-based cooling channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.