Abstract

The current status of the Haplosporidia is reviewed as well as recent information on Haplosporidium nel- soni, the causative agent of MSX disease in oysters. Recent molecular phylogenetic analyses with greatly increased taxon sampling support monophyly of the Haplosporidia and hypothesize placement of the group as sister taxon to the phylum Cercozoa. Oyster pathogens in the genus Bonamia should be considered haplosporidians based on molecular sequence data. Thus, the group contains 4 genera: Uropsoridium, Haplosporidium, Bonamia and Minchinia. Molecular phylogenetic analyses support monophyly of Urosporidium, Bonamia and Minchinia ,b utHaplosporidium forms a pa- raphyletic clade. Reports of haplosporidia worldwide are reviewed. Molecular detection assays have greatly increased our ability to rapidly and specifically diagnose important pathogens in the phylum and have also improved our under- standing of the distribution and biology of H. nelsoni and H. costale. Much of the data available for H. nelsoni has been integrated into a mathematical model of host/parasite/environment interactions. Model simulations support hypotheses that recent H. nelsoni outbreaks in the NE United States are related to increased winter temperatures, and that a host other than oysters is involved in the life cycle. Evidence is presented that natural resistance to H. nelsoni has developed in oysters in Delaware Bay, USA. However, in Chesapeake Bay, USA H. nelsoni has intensified in historically low salinity areas where salinities have increased because of recent drought conditions. Efforts to mitigate the impact of H. nelsoni involve selective breeding programs for disease resistance and the evaluation of disease resistant non-native oysters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call