Abstract

ABSTRACT The interactions at the water/solid interface is of great importance to a broad range of scientific phenomena and technological processes in astrophysics, electrochemistry, corrosion, lubrication, and heterogeneous catalysis. Tremendous research interest has been dedicated to comprehending the behaviours of water molecules near solid surfaces, particularly the first adsorbed water layer (FAWL) due to its dominant role in dictating mass and charge transport and influencing reaction rate and mechanism at the interface. In this review, we summarise the recent advances in the molecular-level understanding of the FAWL on solid substrates. We start by describing the evolution of the ice-like bilayer structures of FAWL on Ru(0001) and Pt(111) surfaces, followed by a brief discussion of substrate surface morphology effect on water structures. Subsequently, we discuss the molecular and dissociative adsorption structures of FAWL on metal oxide surfaces. After that, we interpret how the properties of FAWL affect the behaviour of water molecules above the monolayer. The summary and outlook towards the design and manipulation of ordered monolayer water is presented in the end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call