Abstract

Uncontrolled and fast cell proliferation is the cause of brain tumors. Early cancer detection is vitally important to save many lives. Brain tumors can be divided into several categories depending on the kind, place of origin, pace of development, and stage of progression; as a result, tumor classification is crucial for targeted therapy. Brain tumor segmentation aims to delineate accurately the areas of brain tumors. A specialist with a thorough understanding of brain illnesses is needed to manually identify the proper type of brain tumor. Additionally, processing many images takes time and is tiresome. Therefore, automatic segmentation and classification techniques are required to speed up and enhance the diagnosis of brain tumors. Tumors can be quickly and safely detected by brain scans using imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and others. Machine learning (ML) and artificial intelligence (AI) have shown promise in developing algorithms that aid in automatic classification and segmentation utilizing various imaging modalities. The right segmentation method must be used to precisely classify patients with brain tumors to enhance diagnosis and treatment. This review describes multiple types of brain tumors, publicly accessible datasets, enhancement methods, segmentation, feature extraction, classification, machine learning techniques, deep learning, and learning through a transfer to study brain tumors. In this study, we attempted to synthesize brain cancer imaging modalities with automatically computer-assisted methodologies for brain cancer characterization in ML and DL frameworks. Finding the current problems with the engineering methodologies currently in use and predicting a future paradigm are other goals of this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call