Abstract

The subject of proton transfer between carbon acids and nitrogen bases in aprotic solvents is reviewed. Equilibrium and rate constants that characterize such reactions are most often determined utilizing UV–visible spectrophotometry. At ambient temperature reaction rates are sufficiently rapid that fast reaction methods, for example, the stopped-flow and temperature-jump techniques are required in many cases. Variation of the properties of the donor and acceptor reaction pairs enables electronic and steric effects upon thermodynamic and kinetic parameters of proton transfer to be assessed. Determination of the kinetic isotope effect (KIE), i.e. k(protium)/ k(deuterium) led to the conclusion that, under certain circumstances and when the KIE is greater than seven, the proton undergoes reaction with a significant degree of quantum mechanical tunneling, consistent with a theoretical prediction advanced several decades earlier. In fact this aspect may be one of the most significant outgrowths of these studies. Many reactions have been characterized (by tunneling) but rarely are the reacting systems experimentally amenable to obtaining all the experimental criteria that support tunneling. Controversy that has arisen regarding treatment of experimental data and resulting conclusions from them is visited in this review. The structural nature of the product state of reaction is formulated based on spectroscopic evidence, in favorable cases, and probable structures of the transition state can be inferred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.