Abstract

Magnetic separation has been used in industries to concentrate or remove magnetic minerals/particles for many years. The separation of ultrafine magnetic particles is significantly influenced by aggregation between particles due to various external and interparticle forces, such as gravity, magnetic attraction, van der Waals, electrical double-layer, hydrodynamic, and Brownian diffusion forces. This review focuses on the principles of the magnetic flocculation and separation of micrometer-sized particles in solution. Potential energies between particles are linked to the particle aggregation (i.e. stability), sedimentation and dispersion in applied magnetic fields. Prediction and control of magnetic flocculation are achieved by simulating particle motions around the surface of the magnetic separators using various mathematical models, with some large-scale applications of magnetic flocculation are being demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.