Abstract

This review examines various studies on reducing tensile stresses generated in a polymer matrix composite without increasing the mass or dimension of the material. The sources of residual stresses and their impacts on the developed composite were identified, and the different techniques used in limiting residual stresses were also discussed. Furthermore, the review elaborates on fibre-prestressing techniques based on elastically (EPPMC) and viscoelastically (VPPMC) prestressed polymer matrix composites, while advantages and limitations associated with EPPMC and VPPMC methods are also explained. The report shows that tensile residual stresses are induced in a polymer matrix composite during production as a result of unequal expansion, moisture absorption and chemical shrinkage; their manifestations have detrimental effects on the mechanical properties of the polymer composite. Both EPPMC and VPPMC have great influence in reducing residual stresses in the polymer matrix and thereby improving the mechanical properties of composite materials. The reports from this study provide some basis for selecting a suitable technique for prestressing as well as measuring residual stresses in composite materials.

Highlights

  • Composite materials are developed by combining materials offering unique properties that cannot be achieved individually by the constituent materials

  • When the prestressed fibres are embedded in the polymer matrix and subjected to curing, the elastic recovery with the surrounding polymer matrix continues, thereby imparting compressive stresses that counterbalance the tensile residual stresses generated in the composite matrix [20]

  • Results of Findings Failure strength of the ply increased by increasing the prestress level up to 690 MPa Fibre-prestressing reduced warping, curvature and transverse crack

Read more

Summary

Introduction

Composite materials are developed by combining materials offering unique properties that cannot be achieved individually by the constituent materials. Significant drawbacks, which include a high processing temperature (the polymers must be heated to melting point to incorporate the fibre), a high tendency for the buckling of fibres in the polymer matrices, and solvent and fluid resistance features, have reduced their adoption as a substitute for thermoset in fibre-reinforced polymer composites [5] Both tensile and compressive stresses are generated in polymer composite structures during the manufacturing process, and their occurrence in a composite can result from differences in physical and mechanical properties, a contraction of the polymer matrices before curing, manufacturing techniques and moisture absorption from the environment [6]. The mechanism and methods used for improving the mechanical properties of FRP composites are examined

Source of Residual Stresses in a Composite
Filament Winding
Mechanical Properties of Prestressed PMC
Results of Findings
Residual Stresses Measurement
Methods
Potential Applications and Prospects
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.