Abstract

Power and sample size estimation is one of the crucially important steps in planning a genetic association study to achieve the ultimate goal, identifying candidate genes for disease susceptibility, by designing the study in such a way as to maximize the success possibility and minimize the cost. Here we review the optimal two-stage genotyping designs for genomewide association studies recently investigated by Wang et al(2006). We review two mathematical frameworks most commonly used to compute power in genetic association studies prior to the main study: Monte-Carlo and non-central chi-square estimates. Statistical powers are computed by these two approaches for case-control genotypic tests under one-stage direct association study design. Then we discuss how the linkage disequilibrium strength affects power and sample size, and how to use empirically-derived distributions of important parameters for power calculations. We provide useful information on publicly available software developed to compute power and sample size for various study designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.