Abstract

This review focuses on the synthesis of plant-mediated zinc oxide nanoparticles (ZnO NPs) and their applications for antibacterial and photocatalytic degradation of dyes, thereby addressing the need for sustainable and eco-friendly methods for the preparation of NPs. Driven by the significant rise in antibiotic resistance and environmental pollution from dye pollution, there is a need for more effective antibacterial agents and photocatalysts. Therefore, this review explores the synthesis of plant-mediated ZnO NPs, and the influence of reaction parameters such as pH, annealing temperature, plant extract concentration, etc. Additionally, it also looks at the application of plant-mediated ZnO NPs for antibacterial and photodegradation of dyes, focusing on the influence of the properties of the plant-mediated ZnO NPs such as size, shape, and bandgap on the antibacterial and photocatalytic activity. The findings suggest that properties such as shape and size are influenced by reaction parameters and these properties also influence the antibacterial and photocatalytic activity of plant-mediated ZnO NPs. This review concludes that plant-mediated ZnO NPs have the potential to advance green and sustainable materials in antibacterial and photocatalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call