Abstract

Microelectromechanical systems (MEMS) powered by conventional batteries are disadvantaged in terms of scope of application and environmental friendliness because their power sources need to be replaced regularly and have the risk of polluting the environment. Piezoelectric technology provides a solution for harvesting clean energy such as wind energy from the environment, achieving self-supply of electrical energy for MEMS, and meeting the requirement of without management and maintenance after installation. An overview of piezoelectric wind energy harvesting can help to connect the MEMS field and meet its self-supply needs. This paper presents a comprehensive review of state-of-the-art advances in piezoelectric wind energy harvesters (PWEH). The classification of piezoelectric materials is briefly introduced. The principle of its operation is introduced. It is divided into five categories by structure: bluff body, airfoil, flag, wind concentrator, and wind turbine structures. The research status of harvester has been discussed from four perspectives: structure, application, theoretical modeling, and signal processing. The existing literature is integrated, and the future development directions in three aspects: expanding application area, improving adaptive capabilities, and application-oriented system design are proposed. This paper provides references for people in the industry who are committed to structural innovation and performance enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call