Abstract

Severe climatic and environmental conditions warrant the use of stabilization agents in aid of compaction for sustainable improvement in engineering properties of clays. Physicochemical agents are a viable option because they are cost effective, environmentally friendly, and offer improved long-term performance of treated soils. This research developed a fundamental understanding of the clay–water–electrolyte admixtures relations. Based on a comprehensive literature review, the effect of nanomaterials, biopolymers, and geopolymers on the behavior of compacted clays was investigated. It was found that all of these admixtures facilitate the development of an aggregated soil microstructure through unique mechanisms. Biopolymers have the highest water adsorption capacity followed by geopolymers and then by nanomaterials. The effect of admixtures on optimum compaction properties follows a decreasing trend similar to untreated clays (S = 80% ± 20%). The variation of hydraulic conductivity, compression index, and compressive strength are largely within the family of curves identified by typical relationships for compacted clays. These preliminary findings indicate that not all engineering properties are improved to the same level by the different types of physicochemical admixtures. The specific nature of geotechnical engineering (soil type and site conditions) as well as the wide range of admixture types and potential biodegradation of some of the reagents are the major shortcoming of using this class of materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call