Abstract

Abstract Hydrochloric acid (HCl) is the acid of choice for acidizing operations in most carbonate formations and is the base acid commonly paired with others such as hydrofluoric (HF) in most sandstone applications. However, high dissolving power, high corrosion rate, lack of penetration, and sludging tendency coupled with high temperature can make HCl a poor choice. Alternatively, weaker and less corrosive chemicals such as organic acids can be used instead of HCl to avoid these issues. The objective of this paper is to provide an intensive review on recent advancements, technology, and problems associated with organic acids. The paper focuses on formic, acetic, citric, and lactic acids. This review includes various laboratory evaluation tests and field cases which outline the usage of organic acids for formation damage removal and dissolution. Rotating disk apparatus results were reviewed to determine the kinetics for acid dissolution of different minerals. Additional results were collected from solubility, corrosion, core-flooding, Inductively Coupled Plasma (ICP), X-Ray Diffraction (XRD), and Scanning Electron Microscope Diffraction (SEM) tests. Due to their retardation performance, organic acids have been used along with mineral acids or as a stand-alone solution for high-temperature applications. However, the main drawback of these acids is the solubility of reaction product salts. In terms of conducting dominant wormhole tests and low corrosion rating, organic acids with low concentrations show good results. Organic acids have also been utilized in other applications. For instance, formic acid is used as an intensifier to reduce the corrosion rate due to HCl in high-temperature operations. Acetic and lactic acids can be used to dissolve drilling mud filter cakes. Citric acid is commonly used as an iron sequestering agent. This paper shows organic acid advances, limitations, and applications in oil and gas operations, specifically, in acidizing jobs. The paper differentiates and closes the gap between various organic acid applications along with providing researchers an intensive guide for present and future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call