Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.