Abstract

Meso-scale structure is of critical importance to circulating fluidized bed (CFB) applications. Computational fluid dynamics (CFD) with consideration of meso-scale structures can help understand the structure-oriented coupling between flow, heat/mass transfer and reactions. This article is to review our recent progress on the so-called multiscale CFD (MSCFD), which characterizes the sub-grid meso-scale structure with stability criteria in addition to conservation equations. It is found that the mesh-independent solution of fine-grid two-fluid model (TFM) without sub-grid structures is inexact, in the sense that it overestimates the drag coefficient and fails to capture the characteristic S-shaped axial profile of voidage in a CFB riser. By comparison, MSCFD approach in terms of EMMS/matrix seems to reach a mesh-independent solution of the sub-grid structure, and succeeds in predicting the axial profile and flow regime transitions. Further application of MSCFD finds that neglect of geometric factors is one of the major reasons that cause disputes in understanding the flow regime transitions in a CFB. The operating diagram should, accordingly, include geometric factors besides commonly believed operating parameters for the intrinsic flow regime diagram. Recent extension of MSCFD to mass transfer finds that Reynolds number is insufficient for correlating the overall Sherwood number in a CFB. This is believed the main reason why the conventional correlations of Sherwood number scatter by several orders of magnitude. Certain jump change of state of motion around Reynolds number of 50–100 can be expected to clarify the abrupt decay of Sherwood number in both classical- and circulating-fluidized beds. Finally, we expect that the real-size, 3-D, full-loop, time-dependent multiscale simulation of CFB is an emerging paradigm that will realize virtual experiment of CFBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.