Abstract
Soil temperature is an essential factor for agricultural, meteorological, and hydrological applications. Direct measurement, despite its high accuracy, is impractical on a large spatial scale due to the expensive and time-consuming process. On the other hand, the complex interaction between variables affecting soil temperature, such as topography and soil properties, leads to challenging estimation processes by empirical methods and physical models. Machine learning (ML) approaches gained considerable attention due to their ability to address the limitations of empirical and physical methods. These approaches are capable of estimating the variables of interest using complex nonlinear relationships with no assumptions about data distribution. However, their sensitivity to input data as well as the need for a large amount of training ground truth data limits the application of machine learning approaches. The current paper aimed to provide a review of ML techniques implemented for soil temperature modeling, their challenges, and milestones achieved in this domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.