Abstract

Abstract Nonlinear elements found in fluid film journal bearings and their surrounding structures are known to induce sub- and super-synchronous, chaos and thermally induced instability responses in rotor-bearing systems. The current review summarizes the literature on journal bearing induced nonlinear, rotordynamic forces, and responses. Nonlinear, thermo-elasto-hydrodynamic (TEHD) aspects of journal bearings has become increasingly important in high-performance turbomachines. These have significant influence on bearing dynamic performance and thermally induced, rotordynamic instability problems. Techniques for developing TEHD bearing models are discussed in the second section. Nonlinear solution methodology, including bifurcation determination and time and frequency domain methods such as harmonic balance, shooting and continuation, etc., is presented in the third section. Numerical tools to determine nonlinear vibration responses, including chaos, along with examples of bearing induced nonlinear vibrations are presented in the fourth and fifth sections, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call