Abstract
The development of efficient and high-performance electric vehicle (EV) batteries relies on improving various components, such as the anode and cathode electrodes, separators, and electrolytes. This review paper offers an elaborate overview of different materials for these components, emphasizing their respective contributions to the improvement of EV battery performance. Carbon-based materials, metal composites, and polymer nanocomposites are explored for the anode, offering high energy density and capacity. However, they are noted to be susceptible to Li plating. Unique structures, such as Titanium niobium oxide (TiNb2O7), offer high theoretical capacity, quick Li+ intercalation, and an extended lifecycle. Meanwhile, molybdenum disulfide (MoS2), with 2D and 3D structures, exhibits high reversible specific capacity, outstanding rate performance, and cyclic stability, showing promising properties as anode material. For cathodes, lithium-iron phosphate (LFP), lithium-cobalt oxide (LCO), lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-manganese-cobalt oxide (NMC), and cobalt-free lithium-nickel-manganese oxide (NMO) are considered, offering specific energy and capacity advantages. For instance, LFP cathode electrodes show good thermal stability, good electrochemical performance, and long lifespan, while NMC exhibits high specific energy, relatively high capacity, and cost savings. NCA has a high specific energy, decent specific power, large capacity, and a long lifecycle. NMO shows excellent rate capability, cyclic stability, and cost-effectiveness but with limited cycle performance. Separator innovations, including polyolefin materials, nanofiber separators, graphene-based composites, and ceramic-polymer composites, are analyzed for use as separators, considering mechanical strength, porosity, wettability with the electrolyte, electrolytic absorption, cycling efficiency, and ionic conductivity. The electrolyte comprises lithium salts such as lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), and other salts dissolved in carbonate solvents. This improves energy density, capacity, and cycling stability and provides high ion mobility and resistance to decomposition. By examining the existing literature, this review also explores research on the solid electrolyte interface (SEI) and lithium plating, providing valuable insights into understanding and mitigating these critical issues. Despite the progress, limitations such as practical implementation challenges, potential cost implications, and the need for further research on scale-up feasibility and long-term durability are acknowledged. These efforts to enhance the electrochemical characteristics of key battery parameters—positive and negative electrodes, separators, and electrolytes—aim to improve capacity, specific energy density, and overall energy density. These continuous endeavours strive for faster charging of EV batteries and longer travel ranges, contributing to the ongoing evolution of EV energy storage systems. Thus, this review paper not only explores remarkable strides in EV battery technology but also underscores the imperative of addressing challenges and propelling future research for sustainable and high-performance electric vehicle energy storage systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.