Abstract

Diffuse optical tomography (DOT) is a biomedical imaging modality that can reconstruct hemoglobin concentration and associated oxygen saturation by using detected light passing through a biological medium. Various clinical applications of DOT such as the diagnosis of breast cancer and functional brain imaging are expected. However, it has been difficult to obtain high spatial resolution and quantification accuracy with DOT because of diffusive light propagation in biological tissues with strong scattering and absorption. In recent years, various image reconstruction algorithms have been proposed to overcome these technical problems. Moreover, with progress in related technologies, such as artificial intelligence and supercomputers, the circumstances surrounding DOT image reconstruction have changed. To support the applications of DOT image reconstruction in clinics and new entries of related technologies in DOT, we review the recent efforts in image reconstruction of DOT from the viewpoint of (i) the forward calculation process, including the radiative transfer equation and its approximations to simulate light propagation with high precision, and (ii) the optimization process, including the use of sparsity regularization and prior information to improve the spatial resolution and quantification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.