Abstract

Abstract Gallium phosphide (GaP) has been increasingly prioritized, fueled by the enormous demands in visible light applications such as biomedical and quantum technologies. GaP has garnered tremendous attention in nanophotonics thanks to its high refractive index, indirect bandgap width of 2.26 eV, lattice perfectly matched with silicon, and omnipotent and competitive nonlinear optical properties. Herein, we review the progress and application of GaP in nanoscale devices over the past two decades. The material properties of bulk GaP are first listed, followed by a summary of the methodologies for fabricating nanoscale devices and related integration techniques. Then, we digest the operational mechanisms across different GaP-based devices on their optical linear responses. Following this, we categorize the GaP nonlinear optical effects into multiple aspects including second-harmonic generation, four-wave mixing, Kerr optical frequency combs, etc. Ultimately, we present a perspective on GaP nanophotonics in the context of coexisting and competing modes of various nonlinear effects. We believe that a comprehensive overview of unique GaP will propel these nanophotonic devices toward a mature state, underpinning foundational understanding and leveraging practical innovations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.