Abstract

Background and ObjectiveA high percentage of medical errors, committed because of physician's lack of experience, huge volume of data to be analyzed, and inaccessibility to medical records of previous patients, can be reduced using computer-aided techniques. Therefore, designing more efficient medical decision-support systems (MDSSs) to assist physicians in decision-making is crucially important. Through combining the properties of fuzzy logic and neural networks, fuzzy cognitive maps (FCMs) are among the latest, most efficient, and strongest artificial intelligence techniques for modeling complex systems. This review study is conducted to identify different FCM structures used in MDSS designs. The best structure for each medical application can be introduced by studying the properties of FCM structures. MethodsThis paper surveys the most important decision- making methods and applications of FCMs in the medical field in recent years. To investigate the efficiency and capability of different FCM models in designing MDSSs, medical applications are categorized into four key areas: decision-making, diagnosis, prediction, and classification. Also, various diagnosis and decision support problems addressed by FCMs in recent years are reviewed with the goal of introducing different types of FCMs and determining their contribution to the improvements made in the fields of medical diagnosis and treatment. ResultsIn this survey, a general trend for future studies in this field is provided by analyzing various FCM structures used for medical purposes, and the results from each category. ConclusionsDue to the unique specifications of FCMs in integrating human knowledge and experience with computer-aided techniques, they are among practical instruments for MDSS design. In the not too distant future, they will have a significant role in medical sciences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.