Abstract

Abstract This paper theoretically studied pressure drop variation in microchannels having different cross sections (circular, rectangular, square, trapezoidal, triangular, elliptical, parallel plate, co-centric circles, hexagonal, wavy, smoothed or rounded corners cross sections, and rhombus) for single phase Newtonian fluid (gas and liquid) flow. Based on 41 years (approximately) prior literature (1981–till now), 249 articles were studied and number of correlations of pressure drop calculation in microchannels with or without friction factor equation for four cross sections i.e., rectangular, square, circular, trapezoidal, wavy and triangular is collected and also mentioned their limitations at one place. Other than these four cross sections, there is very few experimental/numerical works was present in the literature. A comparable study was performed for laminar as well as turbulent friction factor to calculate the pressure drop with the help of classical theory for gas and liquid flow in microchannels with circular and rectangular cross sections. Results show wonderful outcomes i.e., correlations of laminar pressure drop study can be extendable for transition and turbulent regime in both types (circular and rectangular) of cross sections of microchannels. In different types of flow regime, it is suggested that for each type of cross section (circular and rectangular) we can go for single correlation for gas/liquid system. It is also investigated that the macro channels pressure drop equations can be used for microchannels up to the certain values of Reynolds number. Basically, this paper provides all possible equations of friction factor related to the microchannels that helps to calculate the pressure drop, is collected at one platform also compared their deviation with conventional channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.