Abstract

Inspecting digital imaging for primary diagnosis introduces perceptual and cognitive demands for physicians tasked with interpreting visual medical information and arriving at appropriate diagnoses and treatment decisions. The process of medical interpretation and diagnosis involves a complex interplay between visual perception and multiple cognitive processes, including memory retrieval, problem-solving, and decision-making. Eye-tracking technologies are becoming increasingly available in the consumer and research markets and provide novel opportunities to learn more about the interpretive process, including differences between novices and experts, how heuristics and biases shape visual perception and decision-making, and the mechanisms underlying misinterpretation and misdiagnosis. The present review provides an overview of eye-tracking technology, the perceptual and cognitive processes involved in medical interpretation, how eye tracking has been employed to understand medical interpretation and promote medical education and training, and some of the promises and challenges for future applications of this technology.

Highlights

  • Decades of research have demonstrated the involvement of diverse perceptual and cognitive processes during medical image interpretation and diagnosis (Bordage, 1999; Elstein, Shulman, & Sprafka, 1978; Gilhooly, 1990; Kundel & La Follette, 1972; Patel, Arocha, & Zhang, 2005)

  • The reliable involvement of these processes has made them of interest as targets for both clinical research and the design of educational interventions to improve diagnostic decisionmaking (Crowley, Naus, Stewart, & Friedman, 2003; Custers, 2015; Nabil et al, 2013)

  • A follow-up study confirmed that fixations over 300 ms did not improve recognition, but did improve decision accuracy; fixations within 2° of the nodule were associated with higher recognition accuracy (Carmody, Nodine, & Kundel, 1980). These early studies suggest that eye tracking can be a valuable tool for helping dissociate putative sources of error during medical image interpretation, given that high-resolution foveal vision appears to be critical for diagnostic interpretation

Read more

Summary

Introduction

Decades of research have demonstrated the involvement of diverse perceptual and cognitive processes during medical image interpretation and diagnosis (Bordage, 1999; Elstein, Shulman, & Sprafka, 1978; Gilhooly, 1990; Kundel & La Follette, 1972; Patel, Arocha, & Zhang, 2005). These early studies suggest that eye tracking can be a valuable tool for helping dissociate putative sources of error during medical image interpretation (i.e., search, recognition, and decision-making), given that high-resolution foveal vision appears to be critical for diagnostic interpretation. If the diagnostician has not fixated a diagnostically relevant region of a medical image successful search has not occurred, and without it, recognition and decision-making are not possible.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.