Abstract
The development of smart negative electrode materials with high capacitance for the uses in supercapacitors remains challenging. Although several types of electrode materials with high capacitance in energy storage have been reported, carbon-based materials are the most reliable electrodes due to their high conductivity, high power density, and excellent stability. The most common complaint about general carbon materials is that these electrode materials can hardly ever be used as free-standing electrodes. Free-standing carbon-based electrodes are in high demand and are a passionate topic of energy storage research. Electrospun nanofibers are a potential candidate to fill this gap. However, the as-spun carbon nanofibers (ECNFs) have low capacitance and low energy density on their own. To overcome the limitations of pure CNFs, increasing surface area, heteroatom doping and metal doping have been chosen. In this review, we introduce the negative electrode materials that have been developed so far. Moreover, this review focuses on the advances of electrospun nanofiber-based negative electrode materials and their limitations. We put forth a future perspective on how these limitations can be overcome to meet the demands of next-generation smart devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.