Abstract

A solid oxide fuel cell (SOFC) is a high-temperature (above 750℃) energy conversion device that generates electricity with high efficiency and low CO2 emission. It is essential to develop high-activity electrodes for its commercialization by lowering the operating temperature to below 700℃. Understanding the electrode reaction kinetics can provide fundamental insights for the rational design of high-performance electrodes. However, the three-dimensional porous microstructures of the SOFC electrodes make it difficult to analyze the reaction processes precisely. To overcome this issue associated with the conventional electrodes, the model electrodes with geometrically well-defined interfaces have been widely employed. In this paper, focusing on the SOFC anodes, the fabrication techniques, cell types, analysis tools, and the modeling studies in the literature will be reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.