Abstract

Electric motors play a crucial role in modern industrial and domestic applications. With the trend of more and more electric drives, such as electric vehicles (EVs), the requirements for electric motors become higher and higher, e.g., high power density with good thermal dissipation and high reliability in harsh environments. Many efforts have been made to develop high performance electric motors, such as the application of advanced novel electromagnetic materials, modern control algorithms, advanced mathematical modeling, numerical computation, and artificial intelligence based optimization design techniques. Among many advanced magnetic materials, soft magnetic composite (SMC) appears very promising for developing novel electric motors, thanks to its many unique properties, such as magnetic and thermal isotropies, very low eddy current loss, and the prospect of low-cost mass production. This paper aims to present a comprehensive review about the application of SMC for developing various electric motors for electric drives, with emphasis on those with three-dimensional (3D) magnetic flux paths. The major techniques developed for designing the 3D flux SMC motors are also summarized, such as vectorial magnetic property characterization and system-level multi-discipline robust design optimization. Major challenges and possible future work in this area are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.