Abstract

Soda residue soil (SRS) is a man-made engineering foundation soil formed by soda residue; it is mainly distributed in coastal areas in China. SRS is rich in a variety of corrosive salts, among which the concentrations of chloride ions are about 2–3 times that of seawater. These highly concentrated chloride ions migrate and diffuse in reinforced concrete (RC) structures built on coastal SRS through multiple transport mechanisms. However, current research on the durability of RC structures exposed to the coastal SRS environment has not led to the publication of any reports in the literature. SRS may be classified by analyzing the quantitative relationships among the corrosive ions it contains. In this paper, the deterioration of RC structures due to the corrosive saline-soil environment in China is discussed, and advances in RC structure durability under such circumstances are reviewed. Our findings show that a corrosive environment, especially when this is a result of coastal SRS, has a significant influence on the deterioration of RC structures, greatly threatening such buildings. A series of effective measures for enhancing the durability of RC structures in saline soil, including improvements in concrete strength, reductions in the water–binder ratio, the addition of mineral admixtures and fiber-reinforcing agents, etc., could provide a vital foundation for enhancing the durability of RC structures which are at risk due to coastal SRS. Vital issues that must be investigated regarding the durability of RC structures are proposed, including the transport mechanism and a prediction model of corrosive ions, dominated by chloride ions (Cl−), in SRS and RC structures, the deterioration mechanism of RC materials, a long-term performance deduction process of RC components, durability design theory, and effective performance enhancement measures. The findings of this paper provide some clear exploration directions for the development of basic theories regarding RC structure durability in coastal SRS environments and go some way to making up for the research gap regarding RC structure durability under corrosive soil environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call