Abstract

ObjectiveThe objective of this study was to perform a narrative review of digital Positron emission tomography-computed tomography (PET-CT) scanners, focussing on the current development in the technology of optimized crystal size and design, the time of flight (ToF) resolution, sensitivity, and axial field of view (AFOV). Key findingsIt was observed that significant developments were carried out on the optimization of scintillation crystal size which results in the improvement of spatial resolution. such developments include the upgrade in the AFOV after the integration of SiPM technology, which results in dynamic parametric imaging acquisition in PET and sensitivity boost. The improvement in ToF resolution and the better ToF resolution values, which result in a boost in adequate sensitivity and signal-to-noise ratio (SNR). Other upgrades include the use of the smallest crystal size of 2.76 × 2.76 mm, and the use of the lowest ToF resolution of 214 ps. The use of the largest AFOV of 194 cm with the highest observed NEMA sensitivity of 225 cps/kBq for the total body PET-CT system. ConclusionDigital PET-CT systems offer various advantages such as a reduction in radiation dose from injected radiopharmaceuticals doses and the overall PET acquisition time with an improved diagnostic certainty. This is because of the better performance of the SiPM detector. Digital PET-CT also has added benefits of the dynamic acquisition and Patlak modeling capabilities into routine clinical practice with the advancement in higher AFOV PET systems. ImplicationThis will help the users choose the best system during the evaluation of the PET-CT for purchase in clinical and research applications. This review will further help in teaching the latest technology and developments in PET-CT systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call