Abstract

This is a systematic review of existing data on dietary selenium (Se) intake and status for various population groups in Europe (including the United Kingdom (UK)) and the Middle East. It includes English language systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional and case-control studies obtained through PUBMED searches from January, 2002, to November, 2014, for European data and from 1990 to November 2014, for Middle Eastern data. Reports were selected if they included data on Se intake and status. The search identified 19 European/UK studies and 15 investigations in the Middle East that reported Se intake and Se concentration in water and/or food and 48 European/UK studies and 44 investigations in the Middle East reporting Se status. Suboptimal Se status was reported to be widespread throughout Europe, the UK and the Middle East, and these results agreed with previous reports highlighting the problem. Eastern European countries had lower Se intake than Western European countries. Middle Eastern studies provided varying results, possibly due to varying food habits and imports in different regions and within differing socioeconomic groups. In conclusion, Se intake and status is suboptimal in European and Middle Eastern countries, with less consistency in the Middle East.

Highlights

  • Interest in selenium (Se) has been growing over the past few decades in a number of areas of human health

  • The results indicate that if 98.7 μg/L of Se in plasma or serum are required to optimize glutathione peroxidases (GPxs) activity [8], suboptimal Se status is found in both regions, but is less consistent in the Middle East

  • The lowest reported serum Se status of all European studies investigated was in Albanian adults living in Greece, with 37.4 μg/L [62]

Read more

Summary

Introduction

Interest in selenium (Se) has been growing over the past few decades in a number of areas of human health. The nutritional status of this metalloid has been difficult to assess via food intake data alone, because many factors influence its presence in the food chain. Its distribution in soil is uneven [1] , a number of other factors affect its concentration in various foods, including varying uptake into plants due to soil pH, rainfall, land contour and microbial activity [2] and importation of food from higher Se areas. Selenoproteins are primarily either structural or enzymatic [2], acting as catalysts for the activation of thyroid hormone and as antioxidants, such as glutathione peroxidases (GPxs) [5]. GPx activity is commonly used as a marker for Se sufficiency in the body [6], where serum or plasma Se concentrations are believed to achieve maximum GPx expression at

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call