Abstract

Soft robots, which are often considered safer than rigid robots when interacting with humans due to the reduced risk of injury, have found utility in various medical and industrial fields. Pneumatic artificial muscles (PAMs), one of the most widely used soft actuators, have proven their efficiency in numerous applications, including prosthetic and rehabilitation robots. PAMs are lightweight, responsive, precise, and capable of delivering a high force-to-weight ratio. Their structure comprises a flexible, inflatable membrane reinforced with fibrous twine and fitted with gas-sealing fittings. For the optimal design and integration of these into control systems, it is crucial to develop mathematical models that accurately represent their functioning mechanisms. This paper introduces a general concept of PAM's construction, its various types, and operational mechanisms, along with its key benefits and drawbacks, and also reviews the most common modeling techniques for PAM representation. Most models are grounded in PAM architecture, aiming to calculate the actuator's force across its full axis by correlating pressure, length, and other parameters that influence actuator strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.