Abstract
The natural extracellular matrix (ECM),thanks to its specific properties (e.g., collagenous lattice, a reservoir of growth factors, ECM-cell anchoring areas, an optimal pH and CO2 ),ensures an optimal microenvironment for homeostatic and regenerative cell development. In the context of regenerative medicine, ECM is a lair for residual and infiltrative cells. The aim of the clinical usage of cell-free ECM scaffolds is the enhancement of tissue regeneration with possible minimization of an adverse host reaction on allogeneic or xenogeneic biomaterial. Thus, the objective of decellularization is to obtain acellular grafts characterized by optimal biological properties, such as a lack of remaining cellular elements (e.g., cell membrane phospholipids and proteins, nucleic acids, mitochondria), lack of immunogenicity, lack of calcification promotion and lack of cytotoxicity (e.g., in unrinsed detergents). Furthermore, cell-free ECM scaffolds should present the optimal mechanical and structural properties that may ensure the biocompatibility of the graft. The maintenance of the ultrastructure composition of the ECM is one of the most important goals of decellularization. All physical, chemical, and biological methods proposed (used separately or in combination to extract cells from tissues/organs) are not 100% effective in cell removal and always cause a disruption of the ECM texture, as well as a probable loss of important structure components. Although cell-free ECM scaffolds are generally classified as medical devices, there are no widely accepted or legally defined criteria for quality control/evaluation methods of obtained matrices. Such criteria must be provided. Some of them have been proposed in this manuscript. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 909-923, 2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.