Abstract
In multi-component alloy steels, the interplay of chemical interactions among elements and variations in atomic radius often results in element segregation towards defects, markedly influencing the macroscopic material properties. Despite many recent studies reporting defect-dependent element segregation in steel, a comprehensive overview is still lacking. In this work, element segregation at various defects and their influence on steel performance are examined. It specifically delves into the influences of element segregation at dislocation, grain boundary, phase boundary, and precipitate phase interface on the mechanical performance of steel. For each type of crystal defect-induced element segregation, this review discusses the crystallographic structure, segregated microstructure, element segregation distribution, and the corresponding influence of element segregation on the mechanical performance of steel. Finally, this review extensively explores the scientific issues and challenges of element segregation research in steel. It provides valuable insights into the behavior of element segregation in steel and inspires new research directions in other multi-component alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.