Abstract

The power battery is an important component of new energy vehicles, and thermal safety is the key issue in its development. During charging and discharging, how to enhance the rapid and uniform heat dissipation of power batteries has become a hotspot. This paper briefly introduces the heat generation mechanism and models, and emphatically summarizes the main principle, research focuses, and development trends of cooling technologies in the thermal management of power batteries in new energy vehicles in the past few years. Currently, the commonly used models for battery heat generation are the electrochemical-thermal model and the electrical-thermal model. Scholars have conducted more research based on multidimensional electrochemical-thermal/electrical-thermal models because taking the actual characteristics of the battery into account can provide a more comprehensive and systematic description. Among various cooling technologies, the air-cooling system boasts the most economical manufacturing costs and a compact, reliable structure. The heat transfer coefficient of the liquid-cooling system is very high, while the temperature remains uniform in the PCMs cooling system during the material phase transition process. Against the background of increasing energy density in future batteries, immersion liquid phase change cooling technology has great development prospects, but it needs to overcome limitations such as high cost and heavy weight. Therefore, the current lithium-ion battery thermal management technology that combines multiple cooling systems is the main development direction. Suitable cooling methods can be selected and combined based on the advantages and disadvantages of different cooling technologies to meet the thermal management needs of different users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.