Abstract

Mammography is the best available tool for screening for the early detection of breast cancer. Mammographic screening has been shown to be effective in reducing breast cancer mortality rates: screening programs have reduced mortality rates by 30–70%. Mammograms are difficult to interpret, especially in the screening context. The sensitivity of screening mammography is affected by image quality and the radiologist's level of expertise. Computer-aided diagnosis (CAD) technology can improve the performance of radiologists, by increasing sensitivity to rates comparable to those obtained by double reading, in a cost-effective manner. Current research is directed toward the development of digital imaging and image analysis systems that can detect mammographic features, classify them, and provide visual prompts to the radiologist. Radiologists would like the ability to change the contrast of a mammogram, either manually or with pre-selected settings. Computer techniques for detecting, classifying, and annotating diagnostic features on the images would be desirable. This paper presents an overview of digital image processing and pattern analysis techniques to address several areas in CAD of breast cancer, including: contrast enhancement, detection and analysis of calcifications, detection and analysis of masses and tumors, analysis of bilateral asymmetry, and detection of architectural distortion. Although a few commercial CAD systems have been released, the detection of subtle signs of breast cancer such as global bilateral asymmetry and focal architectural distortion remains a difficult problem. We present some of our recent works on the development of image processing and pattern analysis techniques for these applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call